Volume 3, Issue 1 (1-2021)                   alkhass 2021, 3(1): 1-11 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Talei S, Soleimani Z. An Overview of Bioenergy with Carbon Capture and Storage Process as a Negative Emission Technology. alkhass 2021; 3 (1) :1-11
URL: http://alkhass.srpub.org/article-4-72-en.html
Energy and Environment Research Center, Niro Research Institute (NRI), Tehran, Iran.
Abstract:   (2820 Views)
Projections of the pathways that reduce carbon emission to the levels consistent with limiting global average temperature increases to 1.5°C or 2°C above پاره-p990industrial levels often require negative emission technologies like bioenergy with carbon capture and storage (BECCS), it involves the conversion of biomass to energy, producing CO2 which is sequestered, transported and then permanently stored in a suitable geological formation. The potential of BECCS to remove CO2 from the atmosphere makes it an attractive approach to help achieving the ambitious global warming targets of COP 21. BECCS has a range of variables such as the type of biomass resource, the conversion technology, the CO2 capture process used and storage options. Each of the pathways to connect these options has its own environmental, economic and social impacts. This study gives an overview of Bioenergy with carbon capture and storage for the purpose of carbon mitigation while the challenges associated with using biomaterial was assessed, such as land use, water consumption and its economic constraints. The more certain way forward to underpin BECCS deployment, is to ensure that there is strong social support and integrated policy schemes that recognize, support and reward negative emission, for without negative emissions delivered through BECCS and perhaps other technologies, there is little prospect of the global targets agreed to at Paris, being met.
Full-Text [PDF 747 kb]   (1044 Downloads)    
Type of Study: Research | Subject: Ecosystem Management, Monitoring, Policy and Law
Received: 2020/11/15 | Revised: 2020/12/22 | Accepted: 2021/01/5 | Published: 2021/01/30

References
1. Solomon, Susan. IPCC. Climate change the physical science basis. 2007; AGU Fall Meeting Abstracts.
2. Birol F. World energy outlook. Int Energ Agency, 2010; 1:3.
3. Edenhofer O, Pichs-Madruga et al. Technical summary. Climate Change 2014: Mitigation of Climate Change Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge/New York, 2014; 31-72.
4. Peters GP, Andrew RM et al. The challenge to keep global warming below 2 °C. Nat Clim Change, 2013; 3: 4-6. [DOI:10.1038/nclimate1783]
5. Fajardy M, Mac Dowell N. Can BECCS deliver sustainable and resource efficient negative emissions? Energ Environ Sci. 2017; 10: 1389-1426. [DOI:10.1039/C7EE00465F]
6. Fajardy M, Mac Dowell N. The energy return on investment of BECCS: is BECCS a threat to energy security? Energ Environ Sci. 2018; 11: 1581-1594. [DOI:10.1039/C7EE03610H]
7. IPCC. Special report on renewable energy sources and climate change mitigation, working group III mitigation of climate change, potsdam institute for climate impact. Research (PIK), Potsdam, Germany. 2011.
8. Global CCS Institute. Global Status of BECCS Projects, Karlsson H, Byström L, Biorecro AB. Stockholm, Sweden. 2010.
9. IPCC. Carbon capture and storage. Special Report of Intergovernmental Panel on Climate Change; 2005.
10. IEA. Energy technology perspectives 2012. Pathways to a Clean Energy System. Int Energ Agency, 2012.
11. Azar C, Lindgren K, Obernsteiner M, Riahi K, van Vuuren D, den Elezen M, et al. The feasibility of low CO2 concentration targets and the role of bio-energy carbon-capture and storage. Clim Change, 2010; 100: 195-202. [DOI:10.1007/s10584-010-9832-7]
12. Hoefnagels R, Junginger M, Resch G, Matzenberger J, Panze C, Pelkmans L. Development of a tool to model European biomass trade. Report for IEA. Bioenergy Task 40; November 2011.
13. ZEP. Biomass with CO2 capture and storage (Bio-CCS): The way forward for Europe; 2012. ZEP.
14. IEAGHG. Potential for biomass and carbon dioxide capture and storage; 2011.
15. Cough C, Upham P. Biomass energy with carbon capture and storage (BECCS or Bio-CCS). Greenhouse Gas Sci Technol. 2011; 1: 324-34. [DOI:10.1002/ghg.34]
16. Rhodes JS, Keith DW. Engineering economic analysis of biomass IGCC with carbon capture and storage. Biomass Bioenerg. 2005; 29: 440-450. [DOI:10.1016/j.biombioe.2005.06.007]
17. Obersteiner M, Azar C, Kauppi P. Managing climate risks. Sci. 2001; 294: 786-787. [DOI:10.1126/science.294.5543.786b] [PMID]
18. Vergragt PJ, Markusson N, Karlsson H. Carbon capture and storage, bio-energy with carbon capture and storage, and the escape from the fossil-fuel lock-in. Global Environ Chang. 2011; 21: 282-292. [DOI:10.1016/j.gloenvcha.2011.01.020]
19. NASEM (National Academies of Sciences, Engineering, and Medicine). 2018. Land Management Practices for Carbon Dioxide Removal and Reliable Sequestration: Proceedings of a Workshop-in Brief. Washington, DC: The National Academies Press.
20. Anthony E. Carbon capture and storage and carbon capture, utilisation and storage. Issu Environ Sci Technol. 2018; 45: 198-215. [DOI:10.1039/9781788010115-00198]
21. Evar B, Armeni C, Scott V. 2012. An introduction to key developments and concepts in CCS. The social dynamics of carbon capture and storage: Understanding CCS representations, governance and innovation.
22. Ribeiro L. Present day conditions in the world of Carbon Capture and Storage (CCS) projects. Editors: Manchao He Luis Ribeiro e Sousa Derek Elsworth (2012).
23. Metz Bert et al. Carbon dioxide capture and storage. IPCC Special Report, 2005; 342.
24. Bui M, Adjiman C. et al. Carbon capture and storage (CCS): The way forward. Energ Environ Sci. 2018; 11(5), 1062-1176. [DOI:10.1039/C7EE02342A]
25. Hickman L. 2016. Timeline: How BECCS became climate change's 'saviour' technology | Carbon.
26. Obersteiner M, Azar C, Kossmeier S, Mechler R, Moellersten K, Nilsson S, Read P, Yamagata Y, Yan J. 2001. Managing climate risk. [DOI:10.1126/science.294.5543.786b] [PMID]
27. Anderson K, Peters G. The trouble with negative emissions. Sci. 2016; 354(6309): 182-183. [DOI:10.1126/science.aah4567] [PMID]
28. IEAGHG. 2011b. Potential for biomass and carbon capture and storage. International Energy Agency Greenhouse Gas R&D Program.
29. EBTP. 2012. Biomass with CO2 Capture and Storage (Bio-CCS). European Biofuels Technology Platform.
30. Kemper J. Biomass with carbon capture and storage (BECCS/Bio-CCS), in IEA Greenhouse Gas R&D Program. 2017, Imperial College London: London, UK.
31. Sabine Fuss JGC, Glen P. Peters, et al. Betting on negative emissions. Nat Clim Chang. 2014; 4. [DOI:10.1038/nclimate2392]
32. Gasser T, Tachiiri CGK, Jones, CD, Ciais P. Negative emissions physically needed to keep global warming below 2 degree C. Nat Comm. 2015. [DOI:10.1038/ncomms8958] [PMID]
33. McCulloch S. 20 Years of carbon capture and storage-accelerating future deployment. 2016, International Energy Agency: Paris, France.
34. Kemper J. Biomass and carbon dioxide capture and storage: A review. Int J Greenhouse Gas Contr. 2015; 40: 401-430. [DOI:10.1016/j.ijggc.2015.06.012]
35. Dominic Woolf JEA, Alayne Street-Perrott F, Johannes Lehmann, Stephen Joseph. Sustainable biochar to mitigate global climate change. Nat Comm. 2010: 1. [DOI:10.1038/ncomms1053] [PMID] [PMCID]
36. Olivia Ricci SS. Global and regional potential for bioelectricity with carbon capture and storage. Energ Pol. 2013: 52: 689-698. [DOI:10.1016/j.enpol.2012.10.027]
37. Sandrine Selosse OR. Achieving negative emissions with BECCS (bioenergy with carbon capture and storage) in the power sector: New insights from the TIAM-FR (TIMES Integrated Assessment Model France) model. Energ. 2014; 76: 967-975.34. [DOI:10.1016/j.energy.2014.09.014]
38. Joris Koornneef PVB, Carlo Hamelinck et al. Global potential for biomass and carbon dioxide capture, transport and storage up to 2050. Int J Greenhouse Gas Contr. 2012; 11: 117-132. [DOI:10.1016/j.ijggc.2012.07.027]
39. Naomi E Vaughan CG. Expert assessment concludes negative emissions scenarios may not deliver. Environ Res Lett. 2016; 11. [DOI:10.1088/1748-9326/11/9/095003]
40. Pete Smith SJD, Felix Creutzig et al. Biophysical and economic limits to negative CO2 emissions. Nat Clim Chang. 2016; 6: 42-50. [DOI:10.1038/nclimate2870]
41. McGlashan NNS, Workman M, Caldecott B. Negative emissions technologies, in briefing paper. Grantham Institute for Climate Change. 2012; 8.
42. McLaren D. A comparative global assessment of potential negative emissions technologies. Proc Safe Environ Protect. 2012; 90: 489-500. [DOI:10.1016/j.psep.2012.10.005]
43. Bronson W, Griscom JA. et al. Natural climate solutions. PNAS, 2017; 114: 11645-11650. [DOI:10.1073/pnas.1710465114] [PMID] [PMCID]
44. Irlam L. Global cost of carbon capture and storage. Global CCS Institute. 2017.
45. Fuss SC, Kraxner F, Peters GP. et al. Research priorities for negative emissions. Environ Res Lett. 2016; 11. [DOI:10.1088/1748-9326/11/11/115007]
46. Dooley SKAK. The risks of relying on tomorrow's 'negative emissions' to guide today's mitigation action. 2016; Stockholm Environment Institute-U.S. Center: Somerville, USA.
47. Jonas Anshelm AH. The last chance to save the planet? An analysis of the geoengineering advocacy discourse in the public debate. Environ Hum. 2014; 5: 101-123. [DOI:10.1215/22011919-3615433]
48. MartinWeih SH, Friderike Beyer, Petra Fransson. Traits to ecosystems: the ecological sustainability challenge when developing future energy crops. Frontiersin Energy Research | Bioenergy and Biofuels, 2014; 2. [DOI:10.3389/fenrg.2014.00017]
49. Fridahl M. Socio-political prioritization of bioenergy with carbon capture and storage. Energ Pol. 2017; 104: 89-99. [DOI:10.1016/j.enpol.2017.01.050]
50. Smith P, Bustamante M. Agriculture, Forestry and Other Land Use (AFOLU), in Climate Change 2014: Mitigation of Climate Change. 2014, IPCC: Berlin, Germany.
51. Mathilde Fajardy NMD. Can BECCS deliver sustainable and resource efficient negative emissions? Energ Environ Sci. 2017; 10: 1389-1426. [DOI:10.1039/C7EE00465F]
52. Walter Zegada-Lizarazu HWE, Salvatore L. Cosentino, Alessandro Zatta, Efi Alexopoulou, Andrea Monti. Agronomic aspects of future energy crops in Europe. Biofuels, Bioproducts and Biorefining, 2010; 4: 674-691. [DOI:10.1002/bbb.242]
53. Nasim Pour PAW, Peter J. Cook. A sustainability framework for bioenergy with carbon capture and storage (BECCS) technologies. Energy Procedia, 2017; 114: 6044-6056. [DOI:10.1016/j.egypro.2017.03.1741]
54. Powers SE. et al. Modeling water and soil quality environmental impacts associated with bioenergy crop production and biomass removal in the Midwest USA. Ecol Model. 2011; 222: 2430-2447. [DOI:10.1016/j.ecolmodel.2011.02.024]
55. Meyer MA, Priess JA. Indicators of bioenergy-related certification schemes-An analysis of the quality and comprehensiveness for assessing local/regional environmental impacts. Biomass and Bioenergy, 2014; 65: 151-159. [DOI:10.1016/j.biombioe.2014.03.041]
56. Hennig C, Gawor M. Bioenergy production and use: Comparative analysis of the economic and environmental effects. Energ Conver Manag. 2012; 63: 130-137. [DOI:10.1016/j.enconman.2012.03.031]
57. McBride AC. et al. Indicators to support environmental sustainability of bioenergy systems. Ecol Indicat. 2011; 11: 1277-1289. [DOI:10.1016/j.ecolind.2011.01.010]
58. Holland RA, Muggeridge FEA, Brown G, Clarke D, Taylor G. A synthesis of the eecosystem services impact of second generation bioenergy crop production. Renew Sustain Energ Rev. 2015; 46: 30-40. [DOI:10.1016/j.rser.2015.02.003]
59. Benefits and Costs of the Expanded Renewable Energy Target, D.o.C. Change, Editor. 2009, McLennan Magasanik Associates.
60. Colin Stucley SS, Ralph Sims, Jim Bland, Belinda Marino, Michael Borowitzka, Amir Abadi, John Bartle, Richard Giles, Quenten Thomas. Bioenergy in Australia; Status and Opportunities. 2012, Bioenergy Australia.
61. Fazio S, Monti A. Life cycle assessment of different bioenergy production systems including perennial and annual crops. Biomass and Bioenergy, 2011; 35: 4868-4878. [DOI:10.1016/j.biombioe.2011.10.014]
62. EU bioenergy potential from a resourceefficiency perspective. European Environment Agency: 2013; Luxembourg.
63. Ingeborg Kluts, Birka Wicke, Rik Leemans, André Faaij. Sustainability constraints in determining European bioenergy potential: A review of existing studies and steps forward. Renew Sustain Energ Rev. 2017; 69: 719-734. [DOI:10.1016/j.rser.2016.11.036]
64. Helena Chum AF, José Moreira. Bioenergy, in climate change mitigartion. 2011; IPCC.
65. Miyake S. et al. Land-use and environmental pressures resulting from current and future bioenergy crop expansion: A review. J Rural Stud. 2012; 28: 650-658. [DOI:10.1016/j.jrurstud.2012.09.002]
66. Le Quéré C, Andrew RM, Canadell JG, Sitch S, Korsbakken JI. et al. Global Carbon Budget 2015. Earth Syst Sci Data, 2015; 7: 349-396. [DOI:10.5194/essd-7-349-2015]
67. Tubiello MS. et al. Agriculture, forestry and other land use emissions by sources and removals by Sinks FS, Division, Editor. 2014, Food and Agriculture Organization of the United Nations (FAO).
68. Francescon T. et al. The contribution of agriculture, forestry and other land use activities to global warming, 1990-2012. Glob Chang Biol. 2015; 21: 2655-2660. [DOI:10.1111/gcb.12865] [PMID]
69. AQUASTAT datasets. 2018, FAO.
70. Managing water under uncertainty and risk, in United Nations world water assessment program. 2012; UNESCO-WWAP.
71. Alexandre Meybeck VG. Climate smart agriculture- Sourcebook. 2013; FAO.
72. Creutzig F. et al. Bioenergy and climate change mitigation: an assessment. Glob Chang Biol Bioenerg. 2015; 7: 916-944. [DOI:10.1111/gcbb.12205]
73. Mohammad RM, Abu-Zahra LOHJS. et al. CO2 capture from power plants Part I. A parametric study of the technical performance based on monoethanolamine. Int J Greenhouse Gas Contr. 1; 37-46. [DOI:10.1016/S1750-5836(07)00032-1]
74. Smith PJEO. Synergies between the mitigation of, and adaptation to climate change in agriculture. J Agr Sci. 2010; 148: 543-552. [DOI:10.1017/S0021859610000341]
75. UNEP. Towards a green economy: pathways to sustainable development and poverty eradication. 2011; United Nations Environment Programme.
76. Leslie Lipper WM, Alexandre Meybeck et al. Climate-Smart agriculture policies, practices and financing for food security. Adapt Mitig. 2010; FAO: Rome, Italy.
77. Brendan H George IDN. Developing options for integrated food-energy systems-promising resources and systems for producing bioenergy feedstocks. IEA Bioenergy Task 43. 2012.
78. Brendan H George IDN. Supply chain logistics and economic considerations for short rotation woody crops in southern Australia. Developing Options for Integrated Food-Energy Systems 2012, IEA Bioenergy Task 43.
79. Wagner SC. Biological nitrogen fixation. Nat Educ Knowl. 2011; 3(10).
80. Fiona C McKenzie JW. Sustainable food production: constraints, challenges and choices by 2050. Food Secur. 2015. [DOI:10.1007/s12571-015-0441-1]
81. World Population Clock. 2018, World Meter.
82. Bruinsma NAAJ. World agriculture towards 2030/2050. 2012, Food and Agriculture Organization of the United Nations (FAO): Rome, Italy.
83. Yvonne Y Deng MK, Martin Haigh, Veronika Dornburg. Country-level assessment of longterm global bioenergy potential. Biomass Bioenerg. 2015; 74: 253-267. [DOI:10.1016/j.biombioe.2014.12.003]
84. Helmut Haberl TB, Sribas C Bhattachary, Karl-Heinz Erb, Monique Hoogwijk. The global technical potential of bio-energy in 2050 considering sustainability constraints. Curr Opin Environ Sustain. 2010; 2: 394-403. [DOI:10.1016/j.cosust.2010.10.007] [PMID] [PMCID]
85. Alexander Popp JPD. et al. The economic potential of bioenergy for climate change mitigation with special attention given to implications for the land system. Environ Res Lett. 2011; 6. [DOI:10.1088/1748-9326/6/3/034017]
86. Wilkinson J. Biofuels and food security. Food Security and Nutrition. 2013, the High Level Panel of Experts: Rome, Italy.
87. Hermann Lotze-Campena MVL. et al. Impacts of increased bioenergy demand on global food markets: an AgMIP economic model inter comparison. Agr Econ. 2014; 45: 103-116. [DOI:10.1111/agec.12092]
88. Matteo Muratori KC, Marshall Wise, Page Kyle, Jae Edmonds. Global economic consequences of deploying bioenergy with carbon capture and storage (BECCS). Environ Res Lett. 2016; 11. [DOI:10.1088/1748-9326/11/9/095004]
89. Rabia Ferroukhi DN, Alvaro Lopez-Peña et al. Renewable energy. Water Energ Food Nexus. 2015; The International Renewable Energy Agency (IRENA).

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.