Volume 4, Issue 2 (4-2022)                   alkhass 2022, 4(2): 1-6 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Majidi A, Abbasi A, Sabokdast M. Biochemical and Physiological Evaluation of At.TC Rapeseed (Brassica Napus L.) under Drought Stress. alkhass 2022; 4 (2) :1-6
URL: http://alkhass.srpub.org/article-4-159-en.html
Agronomy and Plant Breeding Dept., University College of Agriculture and Natural Resources, University of Tehran, Iran.
Abstract:   (576 Views)

Drought stress is one of the major problems in crop production like rapeseed for two reasons. The first reason is that it reduces the plant growth rate through the alternation in physiological, biochemical and molecular processes. The second reason is that it disrupts the balance between the production of reactive oxygen species and the plant's antioxidant defense activities which leads to oxidative stress. One of the plant defense mechanisms is the use of non-enzymatic antioxidants such as vitamin E. This study aims to investigate several biochemical and physiological parameters in some rapeseed genotypes and their transgenic lines. Nima, Hyola4815, RGS003, Dalgan and Zafar genotypes besides transgenic rapeseed plants including Hyola4815 (Line5 and Line6) and RGS003 (Line3), are studied at four levels of 30%, 50%, 70%, and 90% field capacity (FC) using a factorial experiment in the frame of Completely Randomized Design (CRD). It is observed that by decreasing FC, the relative water content (RWC) reduces. On the contrary, malondialdehyde (MDA), polyphenol oxidase (PPO) and catalase (CAT) increase.

Full-Text [PDF 848 kb]   (197 Downloads)    
Type of Study: Research | Subject: Crop Physiology
Received: 2022/02/10 | Revised: 2022/03/6 | Accepted: 2022/03/15 | Published: 2022/04/30

References
1. Kaushal M, Wani SP. Plant-growth-promoting rhizobacteria: drought stress alleviators to ameliorate crop production in drylands. Ann Microbiol. 2016; 66(1): 35-42. [DOI:10.1007/s13213-015-1112-3]
2. Hugly S, Somerville C. A role for membrane lipid polyunsaturation in chloroplast biogenesis at low temperature. Plant Physiol. 1992; 99(1): 197-202. [DOI:10.1104/pp.99.1.197] [PMID] [PMCID]
3. FAO. Food outlook. Global Market Analysis. 2007; http://www.fao.Food outlook.com
4. Shabani A, Haghighi AK, Sepaskhah AR, Emam Y, Honar T. Effect of water stress on physiological parameters of oil seed rape (Brassica napus). J Sci Technol Agr Nat Resour. 2009; 13(49 (B)): 31-43.
5. Dedio W. Water relations in wheat leaves as screening tests for drought resistance. Can J Plant Sci. 1975; 55(2): 369-378. [DOI:10.4141/cjps75-059]
6. Faraloni C, Cutino I, Petruccelli R, Leva AR, Lazzeri S, Torzillo G. Chlorophyll fluorescence technique as a rapid tool for in vitro screening of olive cultivars (Olea europaea L.) tolerant to drought stress. Environ Exp Botany. 2011; 73: 49-56. [DOI:10.1016/j.envexpbot.2010.10.011]
7. Davey MW, Stals E, Panis B, Keulemans J, Swennen RL. High-throughput determination of malondialdehyde in plant tissues. Anal Biochem. 2005; 347(2): 201-207. [DOI:10.1016/j.ab.2005.09.041] [PMID]
8. Stewart RR, Bewley JD. Lipid peroxidation associated with accelerated aging of soybean axes. Plant Physiol. 1980; 65(2): 245-248. [DOI:10.1104/pp.65.2.245] [PMID] [PMCID]
9. Singh N, Singh R, Kaur K, Singh H. Studies of the physico-chemical properties and polyphenoloxidase activity in seeds from hybrid sunflower (Helianthus annuus) varieties grown in India. Food Chem. 1999; 66(2): 241-247. [DOI:10.1016/S0308-8146(99)00057-6]
10. Gill SS, Tuteja N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem. 2010; 48(12): 909-930. [DOI:10.1016/j.plaphy.2010.08.016] [PMID]
11. Sobhanverdi S, Abbasi A, Zeinali H. Genetic transfection of canola with At.TC gene by Agrobacterium method to increase tolerance to oxidative stress. M.Sc. Degree Thesis. University of Tehran. 2016.
12. Schonfeld MA, Johnson RC, Carver BF, Mornhinweg DW. Water relations in winter wheat as drought resistance indicators. Crop Sci. 1988; 28(3): 526-531. [DOI:10.2135/cropsci1988.0011183X002800030021x]
13. Qiu H, Zhang L, Liu C, He L, Wang A, Liu HL, Zhu JB. Cloning and characterization of a novel dehydrin gene, SiDhn2, from Saussurea involucrata Kar. et Kir. Plant Mol Biol. 2014; 84(6): 707-718. [DOI:10.1007/s11103-013-0164-7] [PMID]
14. Pereira GJG, Molina SMG, Lea PJ, Azevedo RAD. Activity of antioxidant enzymes in response to cadmium in Crotalaria juncea. Plant Soil, 2002; 239(1): 123-132. [DOI:10.1023/A:1014951524286]
15. Kar M, Mishra D. Catalase, peroxidase, and polyphenoloxidase activities during rice leaf senescence. Plant Physiol. 1976; 57(2): 315-319. [DOI:10.1104/pp.57.2.315] [PMID] [PMCID]
16. Siddique MRB, Hamid AIMS, Islam MS. Drought stress effects on water relations of wheat. Botan Bull Acad Sinica, 2000; 41.
17. Valentin HE, Lincoln K, Moshiri F, Jensen PK, Qi Q, Venkatesh TV, Gruys KJ. The Arabidopsis vitamin E pathway gene5-1 mutant reveals a critical role for phytol kinase in seed tocopherol biosynthesis. Plant Cell, 2006; 18(1): 212-224. [DOI:10.1105/tpc.105.037077] [PMID] [PMCID]
18. Ghaderi N, Talaie AR, Ebadi A, Lessani H. The physiological response of three Iranian grape cultivars to progressive drought stress. 2011.
19. Silva MDA, Jifon JL, Da Silva JA, Sharma V. Use of physiological parameters as fast tools to screen for drought tolerance in sugarcane. Braz J Plant Physiol. 2007; 19(3): 193-201. [DOI:10.1590/S1677-04202007000300003]
20. Zhang H, Jennings A, Barlow PW, Forde BG. Dual pathways for regulation of root branching by nitrate. Proc Natl Acad Sci. 1999; 96(11): 6529-6534. [DOI:10.1073/pnas.96.11.6529] [PMID] [PMCID]
21. Wilkinson S, Davies WJ. ABA‐based chemical signalling: the co‐ordination of responses to stress in plants. Plant Cell Environ. 2002; 25(2): 195-210. [DOI:10.1046/j.0016-8025.2001.00824.x] [PMID]
22. Willoughby SR, Chirkov YY, Kennedy JA, Murphy GA, Chirkova LP, Horowitz JD. Inhibition of long-chain fatty acid metabolism does not affect platelet aggregation responses. Euro J Pharmacol. 1998; 356(2-3): 207-213. [DOI:10.1016/S0014-2999(98)00527-5] [PMID]
23. Campos PS, Nia Quartin V, Chicho Ramalho J, Nunes MA. Electrolyte leakage and lipid degradation account for cold sensitivity in leaves of Coffea sp. plants. J Plant Physiol. 2003; 160(3): 283-292. [DOI:10.1078/0176-1617-00833] [PMID]
24. Agarwal S, Pandey V. Antioxidant enzyme responses to NaCl stress in Cassia angustifolia. Biol Plantarum, 2004; 48(4): 555-560. [DOI:10.1023/B:BIOP.0000047152.07878.e7]
25. Baziar M, Bandehagh A, Farajzadeh D. Evaluation of some antioxidant enzymes activities and metal ion accumulation in canola inoculated with P. fluorescens FY32 under salinity stress. J Crop Improv. 2014; 16(4): 897-910.
26. Zhang J, Kirkham MB. Antioxidant responses to drought in sunflower and sorghum seedlings. New Phytol. 1996; 132(3): 361-373. [DOI:10.1111/j.1469-8137.1996.tb01856.x] [PMID]
27. Chaitanya KV, Sundar D, Masilamani S, Reddy AR. Variation in heat stress-induced antioxidant enzyme activities among three mulberry cultivars. Plant Growth Regul. 2002; 36(2): 175-180. [DOI:10.1023/A:1015092628374]
28. Antolín MC, Muro I, Sánchez-Díaz M. Application of sewage sludge improves growth, photosynthesis and antioxidant activities of nodulated alfalfa plants under drought conditions. Environ Exp Botan. 2010; 68(1): 75-82. [DOI:10.1016/j.envexpbot.2009.11.001]
29. Amirjani MR, Mahdiyeh M. Antioxidative and biochemical responses of wheat to drought stress. J Agr Biol Sci. 2013; 8(4): 291-301.
30. Mirzai M, Moeini A, Ghanati F. Effects of drought stress on the lipid peroxidation and antioxidant enzyme activities in two canola (Brassica napus L.) cultivars. 2013.
31. Vaseva I, Akiscan Y, Simova-Stoilova L, Kostadinova A, Nenkova R, Anders I, Demirevska K. Antioxidant response to drought in red and white clover. Acta Physiol Plantarum, 2012; 34(5): 1689-1699. [DOI:10.1007/s11738-012-0964-4]
32. Farissi M, Bouizgaren A, Faghire M, Bargaz A, Ghoulam C. Agrophysiological and biochemical properties associated with adaptation of Medicago sativa populations to water deficit. Turk J Botan. 2013; 37(6): 1166-1175. [DOI:10.3906/bot-1211-16]
33. Kadkhodaei A. The effect of irrigation regime on morphological, physiological and biochemical characteristics of sesame genotypes (Sesamum indicum L.). Doctoral Degree Thesis, Agriculture department, Isfahan University of Technology. 2013.
34. Tatari M, Fotouhi-Ghazvini R, Etemadi NA, Ahadi AM, Mousavi A. Analysis of antioxidant enzymes activity, lipid peroxidation and proline content of Agropyron desertorum under drought stress. S West J Horticult Biol Environ. 2012; 3(1): 9-24.

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.