Volume 3, Issue 3 (8-2021)                   alkhass 2021, 3(3): 1-11 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Mohammadi M, Firoz Khan M, Bin Rashid R, Mirzaie Nokhostin S, A. Rashid M. “This article has been retracted at the request of the authors": In Silico Screening of Hispolon and its Analogs: Pharmacokinetics and Molecular Docking Studies with Cyclooxygenase-2 Enzyme. alkhass 2021; 3 (3) :1-11
URL: http://alkhass.srpub.org/article-4-116-en.html
Department of Chemistry, Tehran University, Tehran, Iran.
Abstract:   (889 Views)
Hispolon (H) is a natural phenolic type of bioactive compound with diverse biological activities. The analgesic action of hispolon is due to the inhibition of prostaglandins biosynthesis.  However, the molecular basis of this inhibition has not been explored. Therefore, we have performed theoretical investigations to evaluate the molecular basis of analgesic action of hispolon by docking with cyclooxygenase 2 (COX-2). Further, we have conducted high throughput in silico screening of a compound library consisting of 1699 compounds to get novel COX-2 inhibitors with better pharmacokinetic and analgesic properties. The docking study was conducted on AutoDock vina in PyRx 0.8 and the drug-like properties were calculated by MarvinSketch 15.6.29. Further, the pharmacokinetic properties were computed on online server PreADMET (https://preadmet.bmdrc.kr/). In the current investigations our virtual screening based on structure similarity search afforded 1699 compounds which were subjected for molecular docking with COX-2. These compounds were filtered based on binding affinity and binding poses which yielded 699 compounds. Further, sorting out based on drug-like properties produced a list of seven compounds (H1, H2, H3, H4, H5, H6 and H7). The in silico pharmacokinetic study revealed that these compounds possess good human intestinal absorption and moderate permeability through Caco-2 cell. Further, the Cbrain/Cblood ratio of these compounds indicate moderate penetrability of CNS except H3 and H5. The computational prediction of these compounds as substrates for P glycoprotein showed that H3 may act as both inhibitor and substrate for P glycoprotein. Moreover, molecular docking of H and its selected top hits revealed that all the ligands possess moderate to good binding affinity (-7.6 to -8.9 Kcal/mol) and associate with Val509 via hydrophobic interaction. Ligands H, H1, H2, H3, H4, and H7 can accommodate their aromatic ring inside the side pocket of COX-2 which is similar for accommodation of sulfonamide and methyl sulfone groups for celecoxib and rofecoxib, respectively. Therefore, it is expected that these ligands may exert their analgesic action by selectively blocking the biosynthesis of prostaglandins mediated by COX-2. Our computed properties may assist to develop hispolon derivatives with better pharmacokinetic and COX-2 inhibitory activity.
     
Type of Study: Research | Subject: Pharmaceutical Biotechnology
Received: 2021/05/15 | Revised: 2022/07/4 | Accepted: 2021/07/25 | Published: 2021/08/1

References
1. Nostro A, Germano MP, D'angelo V, Marino A, Cannatelli MA. Extraction methods and bioautography for evaluation of medicinal plant antimicrobial activity. Lett Appl Microbiol. 2000; 30: 379-384. [DOI:10.1046/j.1472-765x.2000.00731.x] [PMID]
2. Vital, Pierangeli G, Windell L Rivera. Antimicrobial activity and cytotoxicity of Chromolaena odorata (L. f.) King and Robinson and Uncaria perrottetii (A. Rich) Merr. Extracts. J Med Plant Res. 2009; 3: 511-518.
3. Papia, Sabikunnahar, Muhammed Mahfuzur Rahman, Md Mustafezur Rahman, Mohaiminul Adib, Mohammad Firoz Khan. In vitro Membrane Stabilizing and In vivo analgesic activities of Boehmeria glomerulifera Miq. in Swiss-Albino Mice Model. Bangladesh Pharmaceut J. 2016; 19: 185-189. [DOI:10.3329/bpj.v19i2.29278]
4. Maridass, Muthia, John De Britto A. Origins of plant derived medicines. Ethnobotan Leaflet. 2008: 44.
5. Krief, Sabrina, Marie-Thérèse Martin, Philippe Grellier, John Kasenene, Thierry Sévenet. Novel antimalarial compounds isolated in a survey of self-medicative behavior of wild chimpanzees in Uganda. Antimicrob Agent Chemother. 2004; 48: 3196-3199. [DOI:10.1128/AAC.48.8.3196-3199.2004] [PMID] [PMCID]
6. Sarker, Mithun, Sreedam Chandra Das, Sajal Kumar Saha, Zobaer Al Mahmud, Sitesh Chandra Bachar. Analgesic and anti-inflammatory activities of flower extracts of Punica granatum Linn.(Punicaceae). J Appl Pharmaceut Sci. 2012; 2. [DOI:10.7324/JAPS.2012.2408]
7. Devaraj, Aruna, Thirunethiran Karpagam. Evaluation of anti-inflammatory activity and analgesic effect of Aloe vera leaf extract in rats. Int Res J Pharm. 2011; 2: 103-110.
8. Ali NA, Ludtke J, Pilgrim H, Lindequist U. Inhibition of chemiluminescence response of human mononuclear cells and suppression of mitogen-induced proliferation of spleen lymphocytes of mice by hispolon and hispidin. Pharmazie. 1996; 51: 667-70.
9. Chen, Yi-Chuan, Heng-Yuan Chang, Jeng-Shyan Deng, Jian-Jung Chen, Shyh-Shyun Huang, I- Hsin Lin, Wan-Lin Kuo, Wei Chao, Guan-Jhong Huang. Hispolon from Phellinus linteus induces G0/G1 cell cycle arrest and apoptosis in NB4 human leukaemia cells. Am J Chin Med. 2013; 41: 1439-1457. [DOI:10.1142/S0192415X13500961] [PMID]
10. Toopmuang, Padungrat, Chutarat Khamchum, Vittaya Punsuvon. Detection and confirmation of hispolon in the mushroom Phellinus linteus. J Sci Asia. 2014; 40: 141-144. [DOI:10.2306/scienceasia1513-1874.2014.40.141]
11. Mo, Shunyan, Sujuan Wang, Guangxiong Zhou, Yongchun Yang, Yan Li, Xiaoguang Chen, Jiangong Shi. Phelligridins C-F: Cytotoxic Pyrano [4, 3-c][2] benzopyran-1, 6-dione and Furo [3, 2-c] pyran-4-one Derivatives from the Fungus Phellinus i gniarius. J Nat Prod. 2004; 67: 823-828. [DOI:10.1021/np030505d] [PMID]
12. Huang, Guan-Jhong, Jeng-Shyan Deng, Shyh-Shyun Huang, Miao-Lin Hu. Hispolon induces apoptosis and cell cycle arrest of human hepatocellular carcinoma Hep3B cells by modulating ERK phosphorylation. J Agr Food Chem. 2011; 59: 7104-7113. [DOI:10.1021/jf201289e] [PMID]
13. Huang, Guan-Jhong, Jeng-Shyan Deng, Chuan-Sung Chiu, Jung-Chun Liao, Wen-Tsong Hsieh, Ming-Jyh Sheu, Chieh-Hsi Wu. Hispolon protects against acute liver damage in the rat by inhibiting lipid peroxidation, proinflammatory cytokine, and oxidative stress and downregulating the expressions of iNOS, COX-2, and MMP-9', Evidence-Based Complementary and Alternative Medicine, 2012. [DOI:10.1155/2012/480714] [PMID] [PMCID]
14. Chang HY, Sheu MJ, Yang CH, Lu TC, Chang YS, Peng WH, Huang SS, Huang GJ. Analgesic effects and the mechanisms of anti-inflammation of hispolon in mice. Evidence-Based Complementary and Alternative Medicine. 2011; 478246. [DOI:10.1093/ecam/nep027] [PMID] [PMCID]
15. Huang, Guan-Jhong, Chih-Min Yang, Yuan-Shiun Chang, Sakae Amagaya, Hsiao-Chieh Wang, Wen-Chi Hou, Shyh-Shyun Huang, Miao-Lin Hu. Hispolon suppresses SK- Hep1 human hepatoma cell metastasis by inhibiting matrix metalloproteinase-2/9 and urokinase-plasminogen activator through the PI3K/Akt and ERK signaling pathways. J Agr Food Chem. 2010; 58: 9468-9475. [DOI:10.1021/jf101508r] [PMID]
16. Ali NA, Awadh RAA, Mothana A, Lesnau H Pilgrim, Lindequist U. Antiviral activity of Inonotus hispidus. Fitoterapia. 2003; 74: 483-485. [DOI:10.1016/S0367-326X(03)00119-9]
17. LE, Limbird, Gilman AG, LZ Benet, DL Kroetz, LB Sheiner, EM Ross, AS Nies, SP Spielberg, CD Klaassen, SL Eck. Goodman & Gilman's the pharmacological basis of therapeutics. 1996.
18. Griswold, Don E, Jerry L Adams. Constitutive cyclooxygenase (COX‐1) and inducible cyclooxygenase (COX‐2): Rationale for selective inhibition and progress to date. Med Res Rev. 1996; 16: 181-206. https://doi.org/10.1002/(SICI)1098-1128(199603)16:2<181::AID-MED3>3.0.CO;2-X [DOI:10.1002/(SICI)1098-1128(199603)16:23.0.CO;2-X]
19. Wang, Junzhi, Beiyan Chen, Fang Hu, Xueling Zou, Haili Yu, Jinyu Wang, Haibo He, Hongqi Zhang, Wenfeng Huang. Effect of Hispolon from Phellinus lonicerinus (Agaricomycetes) on Estrogen Receptors, Aromatase, and Cyclooxygenase II in MCF-7 Breast Cancer Cells. Int J Med Mushroom. 2017; 19. [DOI:10.1615/IntJMedMushrooms.v19.i3.50] [PMID]
20. Khan, Mohammad Firoz, Nusrat Nahar, Ridwan Bin Rashid, Akhtaruzzaman Chowdhury, Mohammad A Rashid. Computational investigations of physicochemical, pharmacokinetic, toxicological properties and molecular docking of betulinic acid, a constituent of Corypha taliera (Roxb.) with Phospholipase A2 (PLA2). BMC Complement Alternat Med. 2018; 18: 48. [DOI:10.1186/s12906-018-2116-x] [PMID] [PMCID]
21. Wang, Jane L, David Limburg, Matthew J Graneto, John Springer, Joseph Rogier Bruce Hamper, Subo Liao, Jennifer L Pawlitz, Ravi G Kurumbail, Timothy Maziasz, John J Talley. The novel benzopyran class of selective cyclooxygenase-2 inhibitors. Part 2: the second clinical candidate having a shorter and favorable human half-life. Bioorgan Med Chem Lett. 2010; 20: 7159-7163. [DOI:10.1016/j.bmcl.2010.07.054] [PMID]
22. O'Boyle, Noel M, Michael Banck, Craig A James, Chris Morley, Tim Vandermeersch, Geoffrey R Hutchison. Open Babel: An open chemical toolbox. J Cheminform. 2011; 3: 33. [DOI:10.1186/1758-2946-3-33] [PMID] [PMCID]
23. Trott, Oleg, Arthur J Olson. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem. 2010; 31: 455-461. [DOI:10.1002/jcc.21334] [PMID] [PMCID]
24. Dallakyan, Sargis, Arthur J Olson. Small-molecule library screening by docking with PyRx. Chem Biol Meth Protocol. 2015; 243-250. [DOI:10.1007/978-1-4939-2269-7_19] [PMID]
25. DeLano, Warren L. The PyMOL user's manual. DeLano Scientific, San Carlos, CA, 452. 2002.
26. Lipinski, Christopher A. Lead-and drug-like compounds: the rule-of-five revolution. Drug Discovery Today: Technol. 2004; 1: 337-341. [DOI:10.1016/j.ddtec.2004.11.007] [PMID]
27. Veber, Daniel F, Stephen R Johnson, Hung-Yuan Cheng, Brian R Smith, Keith W Ward, Kenneth D Kopple. Molecular properties that influence the oral bioavailability of drug candidates. J Med Chem. 2002; 45: 2615-3623. [DOI:10.1021/jm020017n] [PMID]
28. Hughes, Jason D, Julian Blagg, David A Price, Simon Bailey, Gary A DeCrescenzo, Rajesh V Devraj, Edmund Ellsworth, Yvette M Fobian, Michael E Gibbs, Richard W Gilles. Physiochemical drug properties associated with in vivo toxicological outcomes. Bioorgan Med Chem Lett. 2008; 18: 4872-4875. [DOI:10.1016/j.bmcl.2008.07.071] [PMID]
29. Ritchie, Timothy J, Simon JF Macdonald. The impact of aromatic ring count on compound developability-are too many aromatic rings a liability in drug design? Drug Discovery Today. 2009; 14: 1011-1020. [DOI:10.1016/j.drudis.2009.07.014] [PMID]
30. Blobaum, Anna L, Shu Xu, Scott W Rowlinson, Kelsey C Duggan, Surajit Banerjee, Shalley N Kudalkar, William R Birmingham, Kebreab Ghebreselasie, Lawrence J Marnett. Action at a distance mutations of peripheral residues transform rapid reversible inhibitors to slow, tight binders of cyclooxygenase-2. J Biol Chem. 2015; 290: 12793-12803. [DOI:10.1074/jbc.M114.635987] [PMID] [PMCID]
31. Picot, Daniel, Patrick J Loll, Michael Garavito R. The X-ray crystal structure of the membrane protein prostaglandin H2 synthase-1. Nat. 1994; 367: 243. [DOI:10.1038/367243a0] [PMID]
32. Gierse, James K, Joseph J McDonald, Scott D Hauser, Shaukat H Rangwala, Carol M Koboldt, Karen Seibert. A single amino acid difference between cyclooxygenase-1 (COX-1) and− 2 (COX-2) reverses the selectivity of COX-2 specific inhibitors. J Biol Chem. 1996; 271: 15810-15814. [DOI:10.1074/jbc.271.26.15810] [PMID]
33. Yee, Shiyin. In vitro permeability across Caco-2 cells (colonic) can predict in vivo (small intestinal) absorption in man-fact or myth. Pharmaceut Res. 1997; 14: 763-766. [DOI:10.1023/A:1012102522787] [PMID]
34. Yazdanian, Mehran, Susan L Glynn, James L Wright, Amale Hawi. Correlating partitioning and Caco-2 cell permeability of structurally diverse small molecular weight compounds. Pharmaceut Res. 1998; 15: 1490-1494. [DOI:10.1023/A:1011930411574] [PMID]
35. Singh S, Singh J. Transdermal drug delivery by passive diffusion and iontophoresis: a review. Med Res Rev. 1993; 13: 569-621. [DOI:10.1002/med.2610130504] [PMID]
36. Schinkel, Alfred H. P-Glycoprotein, a gatekeeper in the blood-brain barrier. Adv Drug Deliv Rev. 1999; 36: 179-194. [DOI:10.1016/S0169-409X(98)00085-4]
37. Kim, Richard B, Martin F Fromm, Christoph Wandel, Brenda Leake, Alastair JJ Wood, Dan M Roden, Grant R Wilkinson. The drug transporter P-glycoprotein limits oral absorption and brain entry of HIV-1 protease inhibitors. J Clin Invest. 1998; 101: 289-294. [DOI:10.1172/JCI1269] [PMID] [PMCID]
38. Cabrera, Miguel Angel, Isabel González, Carlos Fernández, Carmen Navarro, Marival Bermejo. A topological substructural approach for the prediction of P-glycoprotein substrates. J Pharmaceut Sci. 2006; 95: 589-606. [DOI:10.1002/jps.20449] [PMID]
39. Wang, Yong-Hua, Yan Li, Sheng-Li Yang, Ling Yang. Classification of substrates and inhibitors of P-glycoprotein using unsupervised machine learning approach. J Chem Inform Model. 2005; 45: 750-757. [DOI:10.1021/ci050041k] [PMID]
40. de Cerqueira Lima, Patricia, Alexander Golbraikh, Scott Oloff, Yunde Xiao, Alexander Tropsha. Combinatorial QSAR modeling of P-glycoprotein substrates. J Chem Inform Model. 2006; 46: 1245-1254. [DOI:10.1021/ci0504317] [PMID]
41. Zhou, Shu-Feng. Drugs behave as substrates, inhibitors and inducers of human cytochrome P450 3A4. Curr Drug Metabol. 2008; 9: 310-322. [DOI:10.2174/138920008784220664] [PMID]
42. Kalgutkar, Amit S, Brenda C Crews, Scott W Rowlinson, Alan B Marnett, Kevin R Kozak, Rory P Remmel, Lawrence J Marnett. Biochemically based design of cyclooxygenase-2 (COX-2) inhibitors: facile conversion of nonsteroidal antiinflammatory drugs to potent and highly selective COX-2 inhibitors. Proceedings of the National Academy of Sciences, 2000; 97: 925-9230. [DOI:10.1073/pnas.97.2.925] [PMID] [PMCID]
43. Rowlinson, Scott W, James R Kiefer, Jeffery J Prusakiewicz, Jennifer L Pawlitz, Kevin R Kozak, Amit S Kalgutkar, William C Stallings, Ravi G Kurumbail, Lawrence J Marnett. A novel mechanism of cyclooxygenase-2 inhibition involving interactions with Ser-530 and Tyr-385. J Biol Chem. 2003; 278: 45763-45769. [DOI:10.1074/jbc.M305481200] [PMID]
44. Khan, Mohammad Firoz, Sharmin Aktar, Ridwan Bin Rashid, and Mohammad A Rashid. In silico investigation of physicochemical, pharmacokinetic and toxicological properties of Hispolon. 2017; 9: 5.

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.