
 

                       ALKHAS; The Journal of Environment, Agriculture 

and Biological Sciences 
 Volume 2, Number 2: (1-10), 2020 

   Available online at:  http://alkhass.srpub.org/ 

 

 

 

  
This open-access journal is published under the terms of the Creative Commons Attribution-Noncommercial 4.0 International License. 

 

New idea for controling rainfall in urban and suburban regions 

Ehsan Modaresi 1  and Yazdan Kheradmand 2 

1 M. Sc of Civil Engineering, Chaloos Branch, Islamic Azad University, Chaloos.Iran 

Ehsan.modaresi.em@gmail.com  
2 Assistant Professor, Dep. of Civil Engineering, Shirvan Branch, Islamic Azad University, Shirvan, Iran. 

Yazdan.kherdmand1400@gmail.com  

 

 

Article history: 

 
Received date: 28 November, 2019 

Review date: 7 February 2020 

Accepted date:23 March 2020 

 
Abstract 
As catchments develop urbanized because of inhabitants growth the impervious 

surfaces shaped by buildings and pavements in the expense of permeable soil, 

depressions, and vegetation cause rainwater to stream rapidly over the 

landscape. To moderate the contrary impact of urbanization such as 

augmented flooding and depleted groundwater recharge, about the world, 

several best managements performs, in other words, green infrastructures have 

been practised, and soak-away rain garden is one of them. However, to have a 

swift calculation of soak-away rain gardens on a range of potential hydrologic 

circumstances (e.g., scope of the soak-away rain garden, saturated hydraulic 

conductivity of the in-situ soil, and saturated hydraulic conductivity of the filter 

media), hydrologic design strategies or design charts of soak-away rain 

gardens that are precise for local circumstances are not currently available for 

many areas including Singapore.  Therefore, in this paper, with a design 

hyetograph of 3-month average rainfall strengths of Singapore, hydrologic 

design charts, particularly, design charts on overflow capacity (as a % of total 

runoff volume) of soak-away rain gardens are established for a range of 

potential hydrologic conditions by developing a mathematical model based on 

Richard’s equation using COMSOL Multiphysics, a finite element analysis and 

solver software package for different physics and engineering requests. These 

easy to use look-up hydrologic design diagrams will be of countless helpfulness 

for local managers in the design of soak-away rain gardens. 
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INTRODUCTION: 

 

Around the world, as populations multiply catchments become urbanized with the changes in land use. 

However, the way water flows in a catchment is extensively altered by the process of urbanization. In urban 

catchments, the impervious surfaces created by buildings and pavements in the expense of permeable soil, 

depressions, and vegetation cause rainwater to flow rapidly over the landscape, rather than naturally 

infiltrating into the soil. This has arguably caused many issues such as reduction in groundwater recharge, 

long-term lowering of groundwater tables, and most importantly increased flooding that endangers existing 

infrastructures [1,2]. To maintain or replicate predevelopment hydrologic regime, around the world, several 

nature-based best management practices, in other words, green infrastructures have been used in a way that 

protect the natural hydrology of the catchment and are more beneficial to the environment [1-5]. Soak-away 

rain garden is one of those best practices management practices or green infrastructures. 

Soak-away rain gardens, shallow, landscaped depressions commonly located in parking lots or within small 

pockets in residential areas, receive stormwater runoff, attenuate surface water and enable it to percolate into 

the surrounding ground. Though soak-away rain gardens are becoming important stormwater best 

management practices, the fundamental understandings of these structures are still at an undeveloped stage 

mainly due to the fact that these structures are exposed to highly dynamic hydrological conditions[1,2]. 
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Consequently, detailed hydrologic performance information and related hydrologic design guidelines of 

soak-away rain gardens are not currently available for many regions including Singapore. Hydrologic design 

guidelines of soak-away rain gardens are often represented ashydrologic relationships or design charts. One 

of the most important hydrologic relationships or design charts is the relationship between overflow volume 

as a % of total runoff volume andhydrologic conditions, such as size of the soak-away rain garden, saturated 

hydraulic conductivity of the in-situ soil, and saturated hydraulic conductivity of the filter media, which can 

assist local managers to mitigate the flooding that endangers existing infrastructures and the downstream 

users. Moreover, by the use of such design charts, rapid assessment to test multiple designs under different 

scenarios is possible for a range of potential hydrologic conditions (e.g., size of the soak-away rain garden, 

saturated hydraulic conductivity of the in-situ soil, and saturated hydraulic conductivity of the filter media). 

There is, therefore, a great utility in providing easy to use look-up design charts. However, to assist local 

water managers, these design charts that are specific for local conditions need to be established. To establish 

such design charts, a comprehensive mathematical modeling work independent of field data is required as in 

practice it is not feasible to measure a desired hydrological variable for every possible hydrological 

condition. Therefore, it is the objective of this study to establish such hydrologic design charts (i.e., design 

charts on overflow volume as a % of total runoff volume) by developing a mathematical model based on 

Richard’s equation [6, 8] using COMSOL Multiphysics [7,8]. 

 

COMSOL MULTIPHYSICS 

COMSOL Multiphysics is a powerful interactive environment for modeling and solving partial differential 

equations in scientific and engineering problems. The software provides a powerful integrated desktop 

environment with a Model Builder where the users get full overview of the model and access to all 

functionality. With COMSOL Multiphysics the users can easily extend models for one type of physics into 

multiphysics models that solve coupled physics phenomena. COMSOL Multiphysics also allows the users to 

perform various types of studies such as stationary and time-dependent studies. When solving the models, 

COMSOL Multiphysics uses the proven finite element method. The software runs the finite element analysis 

together with adaptive meshing and error control using a variety of numerical solvers. A more detailed 

description of the mathematical and numerical foundation is in the COMSOL Multiphysics Reference Guide 

[8]. 

 

METHODOLOGY AND DISCUSSION OF RESULTS 

This section of the paper is divided into three sub-sections. The sub-section 3.1describes the 3D model 

development in COMSOL Multiphysics, the sub-section 3.2 briefly summarizes the hyetograph to represent 

the 3-month average rainfall intensities (ARIs), which was used to simulate the developed model, and the 

sub-section 3.3 discusses the results. 
Model Development in COMSOL Multiphysics 

Modeling of a soak-away rain garden involves flow in variably saturated porous media. Flow in variably 

saturated porous media is modeled using the Earth Sciences Module (Subsurface Flow Module) of 

COMSOL Multiphysics. A review of COMSOL’s Earth Sciences Module for simulating flow in variably 

saturated porous media can be found in [9]. Using the Earth Sciences Module of COMSOL, to develop a 

model in variably saturated porous media, among other things, it is required to define the model geometry, 

the mathematical representation of the physical processes of interest, the initial/boundary conditions, and the 

water balance of the soak-away rain garden. 
Model Geometry using COMSOL Multiphysics 

Figure 1 shows the 3D geometry of a soak-away rain garden that allows stormwater runoff to ex-filtrate into 

the surrounding soil. For demonstration purpose, a soak-away rain garden with a width of 5 m and a height 

of 1.0 m is chosen. The length of the soak-away rain garden is 5 m. The shape of the soak-away rain garden 

is assumed to be of rectangular/square shape. The height of the filter media, the primary soil layer, is 0.6 m. 

The height of the ponding space, which is defined above the filter media, is limited to 0.2 m.  The width and 

length of the area of the influence is 15 m.   
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Figure 1.Graphical representation of a soak-away rain garden in COMSOL Multiphysics. 

 

Using COMSOL Multiphysics, the 3D geometry of the soak-away rain garden of the above mentioned 

dimensions was formed by first creating a block feature, whose block name is “blk1”, to represent the outer 

dimensions. The width and the length of this block were set to “15” and the height was set to “5”. Similar to 

block feature, “blk1”, another block feature, whose block name is “blk2”, was created. The width and the 

length of this block were set to “5” and the height was set to “1”, but the block position was set to (5,5,4) in 

(X,Y,Z) direction. To represent the in-situ soil, the block feature, “blk2”, was subtracted from the block 

feature, “blk1”, by creating a Difference feature ("dif1"), a Boolean operation with the 'input' properties set 

to “blk1” and “blk2”. To represent the filter media, similar to block features “blk1” and “blk2”, another 

block feature, whose block name is “blk3”, was created. The width and the length of this block were set to 

“5” and the height was set to “0.6”, but the block position was set to (5,5,4) in (X,Y,Z) direction. To 

represent the soak-away rain garden, the block feature “blk3” was unioned with the Difference feature 

("dif1"), by creating a Union feature ("uni1"), a Boolean operation with the 'input' properties set to “blk3” 

and “diff1”. 

 
Representation of the Physical Processes using COMSOL Multiphysics 

Richards’ equation models flow in variably saturated porous media. Many efforts to simplify and improve 

the modeling of flow in variably saturated media have produced a number of variants of Richards’ equation. 

In this paper, the form of the Richards’ equation adopted in COMSOL Multiphysics is used [7][8].The 

Richards’ equation was applied for both the in-situ soil and the filter media of the soak-away rain garden. 

The adopted equation is presented in equation (1).                                                                            

      

               (1) 

Where the pressure, p, is the dependent variable. In this equation, Cm represents the specific moisture 

capacity, Se denotes the effective saturation, S is the storage coefficient, κs gives the hydraulic permeability, 

μ is the fluid dynamic viscosity, kr denotes the relative permeability, ρ is the fluid density, g is acceleration 

of gravity, D represents the elevation, and Qm is the fluid source (positive) or sink (negative). The fluid 

velocity across the faces of an infinitesimally small surface is given by equation (2).   

             

           

                  (2) 
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Where u is the flux vector. The porous medium consists of pore space, fluids, and solids, but only the liquids 

move. The equation (2) describes the flux as distributed across a representative surface. To characterize the 

fluid velocity in the pores, COMSOL Multiphysics also divides u by the volume liquid fraction, θs. This 

interstitial, pore or average linear velocity is ua = u/θs[7][8]. 
Initial/Boundary Conditions using COMSOL Multiphysics 

To solve flow in variably saturated porous media, it is necessary that appropriate boundary conditions are 

specified. From a mathematical standpoint, the application of boundary conditions ensures that the solutions 

to the problems are self-consistent. In this study, the following boundary conditions are identified as 

appropriate. As shown in Figure 2, which represents the frontal view of cut-plane (YZ Plane) A-A of Figure 

1, the top surface of the rain garden is a rainfall-runoff boundary, a non-steady-state flow condition typical of 

urban stormwater runoff. The external side boundaries do not allow water to flow in or out of the area of 

influence, implying that the chosen area is large enough that it does not affect the flow performance around 

the rain garden. The bottom boundary of the area of influence is specified by a hydraulic head corresponding 

to an assumed groundwater table level. When water starts to pond, the boundary condition at the top surface 

of the rain garden becomes a hydraulic boundary. Therefore, there is a need to be able to switch the top 

surface of the rain garden from flow to hydraulic head. The switching was done using COMSOL Java API, a 

Java-based interface [7][8]. The initial condition was set to hydrostatic condition. In other words, above 

groundwater table, the suction is equal to the distance above groundwater table. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2.Boundary conditions of a soak-away rain garden in COMSOL Multiphysics. 

 
Water Balance of the Soak-away Rain Garden using COMSOLMultiphysics 

Water Balance of the soak-away rain garden was carried out using a continuity equation whose components 

are stormwater runoff, overflow (which is the excess of the ponding space), change of soil moisture within 

the filter media, change of water storage within the ponding space, vertical ex-filtration, and horizontal ex-

filtration. At a given time, horizontal ex-filtration and vertical ex-filtration were computed by integrating the 

model computed velocity along the four side walls and the bottom surface of the soak-away rain garden, 

respectively. 

 

Development of Design Hyetograph 

The design of soak-away rain gardens involves water quality. Thus, the establishment of a design hyetograph 

for the design of soak-away rain gardens, specifically, requires data on intensity–duration–frequency (IDF) 

values for relatively frequent storms such as 3-Month ARIs that carry up to 90% of the total load on annual 

basis.  As underscored in the literature, to date, there are few methods available for the establishment of 

design hyetographs using IDF data [10]. In this paper, the alternating block method [10], which represents an 

event of a selected return period both for the selected duration of the event and for any period within this 
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selected duration, is used in developing a design hyetograph from an IDF relationship of Singapore. A storm 

duration of 720 min was considered. Considering an event of 720 min of the 3-Month ARIs, a design 

hyetograph for 3-Month ARIs built-up using this method represents a 3-Month ARI event both for the 720 

min total duration and for any period (i.e., 5 min, 10 min, 15 min, 30 min, 60 min,…, 360 min) within this 

duration centered on the maximum block [10]. The design hyetograph produced by this method specifies the 

rainfall depth occurring in n successive time intervals of duration Δt over a total duration of 720 min=nΔt. 

Duration Δt is often determined by the finest resolution of the hydrological model that is used to generate the 

design hydrograph, the time distribution of discharge. The hyetograph to represent a 3-Month ARI event of 

720 min duration is shown in Figure 3for a duration (Δt) of 6 min which is the finest resolution of MUSIC 

(Model for urban stormwater improvement conceptualization) model which was used to generate the 

hydrographs for different urbanized (impervious percentage of 90% was assumed) catchment sizes varied 

from 100 to 250 m2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Design hyetograph for 3-month ARIs. 

 

DISCUSSION: 
In this study, the simulation was carried out for different values of saturated hydraulic conductivity of the in-

situ soil, surface area of the soak-away rain garden (as a % of catchment area), saturated hydraulic 

conductivity of the filter media, and depth to groundwater table measured from bottom of the filter media. 

The saturated hydraulic conductivity of the in-situ soil was varied from 10mm/hr to 50mm/hr, typical range 

in Singapore. The surface area of the soak-away rain garden (as a % of catchment area) was varied from 6% 

to 15%. The width and the length of the soak-away rain garden were assumed to be of the same size. The 

saturated hydraulic conductivity of the filter media was varied from 100mm/hr to 200mm/hr, typical range in 

Singapore. The depth to groundwater table was varied from 0.5m to 1.5m. Having simulated the model for a 

range of potential hydrologic conditions (e.g., size of the soak-away rain garden, saturated hydraulic 

conductivity of the in-situ soil, and saturated hydraulic conductivity of the filter media), hydrologic 

relationships or design charts between overflow volume (as a % of total runoff volume) and the potential 

hydrologic conditions were established. In the following sections, the impacts of potential hydrologic 

conditions on design charts of overflow volume (as a % of total runoff volume) are discussed. 

 
Impact of Surface Area of the Soak-Away Rain Garden  

Figure 4shows the graph of overflow volume versus the surface area of the soak-away rain garden (as a % of 

catchment area). The overflow volume isthe total volume of water for the simulation period=720min that is 

in excess of ponding space and expressed as a % total runoff volume. For this graph, the saturated hydraulic 

conductivity of the filter media and the depth to groundwater table were set to 100 mm/hr and 0.5 m, 

respectively. The graph also shows the variation with saturated hydraulic conductivities of the in-situ soil. 

The saturated hydraulic conductivity of the in-situ soil varies from 10mm/hr to 50 mm/hr. As can be 

observed from the graph, for a given saturated hydraulic conductivity of the filter media, depth to 
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groundwater table, and saturated hydraulic conductivity of the in-situ soil, the overflow volume (as a % of 

total runoff volume)  decreases as the surface area of the soak-away rain garden (as a % of catchment area) 

increases. This is owing to the fact that the ex-filtrated water, which is drained through bottom and side walls 

of the soak-away rain garden, is proportional to surface area of the soak-away rain garden. Thus, as the 

surface area of the soak-away rain garden increases it is expected to have more ex-filtrated water and thus 

less overflow volume (as a % of total runoff volume). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4.Overflow volume (as a % total runoff volume) for a depth to groundwater table of 0.5m and a saturated 

hydraulic conductivity of the filter media of 100 mm/hr. 

 
Impact of Saturated Hydraulic Conductivity of the In-situ Soil: 

As can be observed from Figure 4, for a given saturated hydraulic conductivity of the filter media, depth to 

groundwater table, and surface area of the soak-away rain garden (as a % of catchment area), the overflow 

volume (as a % of total runoff volume) decreases as the saturated hydraulic conductivity of the in-situ soil 

increases. The possible reason for this observation is that the ex-filtrated water, which is drained through 

bottom and side walls of the soak-away rain garden, increases as the saturated hydraulic conductivity of the 

in-situ soil increases. This is owing to the fact that the ability of the soil fluid to flow through the soil matrix 

system increases as the saturated hydraulic conductivity of the in-situ increases. Thus, as the saturated 

hydraulic conductivity of the in-situ soil increases it is expected to have more ex-filtrated water and thus less 

overflow volume (as a % of total runoff volume). 

 
Impact of Depth to Groundwater Table:  

To understand the impact of depth to groundwater table on overflow volume (as a % of total runoff volume), 

as shown in Figure 5and Figure 6, graphs of overflow volume (as a % of total runoff volume) versus the 

surface area of the soak-away rain garden (as a % of catchment area) were plotted. The depth to groundwater 

table was measured from bottom of the filter media. For these graphs, as previously, the saturated hydraulic 

conductivity of the filter media was set to 100 mm/hr, but the depth to groundwater table was varied from 

1.0m to 1.5m. The graphs also show the variation with the saturated hydraulic conductivities of the in-situ 

soil. As can be observed from these graphs, for a given saturated hydraulic conductivity of the filter media, 

saturated hydraulic conductivity of the in-situ soil, and surface area of the soak-away rain garden (as a % of 

catchment area), the overflow volume (as a % of total runoff volume) increases as depth to groundwater 

table increases. The possible reason for this observation is that as depth to groundwater table increases flow 

length increases. However, ex- filtrated flow is inversely proportional to the flow length. Thus, as depth to 

groundwater table increases it is expected to have less ex-filtrated water and thus more overflow volume (as 

a % of total runoff volume). 
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Figure 5.Overflow volume (as a % total runoff volume) for a depth to groundwater table of 1.0m and a saturated 

hydraulic conductivity of the filter media of 100 mm/hr. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 6.Overflow volume (as a % total runoff volume) for a depth to groundwater table of 1.5m and a saturated 

hydraulic conductivity of the filter media of 100 mm/hr. 

 
Impact of Saturated Hydraulic Conductivity of the Filter Media  

To understand the impact of saturated hydraulic conductivity of the filter media on overflow volume (as a % 

of total runoff volume), as shown in Figure 7and Figure 8, graphs of overflow volume (as a % of total runoff 

volume) versus the surface area of the soak-away rain garden (as a % of catchment area) were plotted. In 

Figure7 and Figure 8, the saturated hydraulic conductivity of the filter media was set to 150 mm/hr and 200 

mm/hr, respectively. For these graphs the depth to groundwater table was set to 0.5m. The graphs also show 

the variation with the saturated hydraulic conductivities of the in-situ soil. Figure 9 shows the graphs for the 

considered saturated hydraulic conductivities of the filter media, but depths to groundwater table of 1.0m and 

1.5 m.  
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Figure 7.Overflow volume (as a % total runoff volume) for a depth to groundwater table of 0.5m and a saturated 

hydraulic conductivity of the filter media of 150 mm/hr. 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 8. Overflow volume (as a % total runoff volume) for a depth to groundwater table of 0.5m and a saturated 

hydraulic conductivity of the filter media of 150 mm/hr. 

 

As can be observed from these graphs, for a given saturated hydraulic conductivity of the in-situ soil, depth 

to groundwater table, and surface area of the soak-away rain garden (as a % of catchment area), the overflow 

volume (as a % of total runoff volume)  decreases as the saturated hydraulic conductivity of the filter media 

increases. The possible reason for this observation is that the ex-filtrated water, which is drained through 

bottom and side walls of the soak-away rain garden, increases as the saturated hydraulic conductivity of the 

filter media increases. This is owing to the fact that the ability of the soil fluid to flow through the soil matrix 

system increases as the saturated hydraulic conductivity of the filter media increases. Thus, as the saturated 

hydraulic conductivity of the filter media increases it is expected to have more ex-filtrated water and thus 

less overflow volume (as a % of total runoff volume). 
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Figure 9.Overflow volume (as a % total runoff volume) for a (a) depth to groundwater table of 1.0 m and a saturated 

hydraulic conductivity of the filter media of 200 mm/hr (b) depth to groundwater table of 1.5m and a saturated 

hydraulic conductivity of the filter media of 200 mm/hr (c) depth to groundwater table of 1.0 m and a saturated 

Hydraulic conductivity of the filter media of 150 mm/hr (d) depth to groundwater table of 1.5m and a saturated 

hydraulic conductivity of the filter media of 150 mm/hr. 

 

CONCLUSION: 

To have a rapid assessment of soak-away rain gardens on a range of potential hydrologic conditions (e.g., 

size of the soak-away rain garden, saturated hydraulic conductivity of the in-situ soil, and saturated hydraulic 

conductivity of the filter media), with a design hyetograph of 3-month average rainfall intensities of 

Singapore, this study establishes easy to use look-up hydrologic design charts, especially, design charts on 

overflow volume (as a % of total runoff volume) of soak-away rain gardens that are specific for local 

conditions by developing a mathematical model based on Richard’s equation using COMSOL Multiphysics. 

These easy to use look-up hydrologic design charts will be of great utility for local managers in the design of 

soak-away rain gardens to control the flooding that endangers existing infrastructures and the downstream 

users. 
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